Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Biomol Biomed ; 23(6): 1069-1078, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37212036

RESUMO

Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.


Assuntos
Síndrome Metabólica , Hiperplasia Prostática , Masculino , Humanos , Ratos , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Ciclina D1 , Receptor CB1 de Canabinoide , Piperidinas/farmacologia
2.
Neuropharmacology ; 232: 109538, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024011

RESUMO

Rats re-exposed to an environment previously associated with the onset of shocks evoke a set of conditioned defensive responses in preparation to an eventual flight or fight reaction. Ventromedial prefrontal cortex (vmPFC) is mutually important for controlling the behavioral/physiological consequences of stress exposure and the one's ability to satisfactorily undergo spatial navigation. While cholinergic, cannabinergic and glutamatergic/nitrergic neurotransmissions within the vmPFC are shown as important for modulating both behavioral and autonomic defensive responses, there is a gap on how these systems would interact to ultimately coordinate such conditioned reactions. Then, males Wistar rats had guide cannulas bilaterally implanted to allow drugs to be administered in vmPFC 10 min before their re-exposure to the conditioning chamber where three shocks were delivered at the intensity of 0.85 mA for 2 s two days ago. A femoral catheter was implanted for cardiovascular recordings the day before fear retrieval test. It was found that the increment of freezing behavior and autonomic responses induced by vmPFC infusion of neostigmine (acetylcholinesterase inhibitor) were prevented by prior infusion of a transient receptor potential vanilloid type 1 (TRPV1) antagonist, N-methyl-d-aspartate receptor antagonist, neuronal nitric oxide synthase inhibitor, nitric oxide scavenger and soluble guanylate cyclase inhibitor. A type 3 muscarinic receptor antagonist was unable to prevent the boosting in conditioned responses triggered by a TRPV1 agonist and a cannabinoid receptors type 1 antagonist. Altogether, our results suggest that expression of contextual conditioned responses involves a complex set of signaling steps comprising different but complementary neurotransmitter pathways.


Assuntos
Acetilcolinesterase , Medo , Masculino , Ratos , Animais , Ratos Wistar , Acetilcolinesterase/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Córtex Pré-Frontal , Colinérgicos/farmacologia
3.
J Control Release ; 353: 254-269, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442615

RESUMO

Over-activation of the endocannabinoid/CB1R system is a hallmark feature of obesity and its related comorbidities, most notably type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD). Although the use of drugs that widely block the CB1R was found to be highly effective in treating all metabolic abnormalities associated with obesity, they are no longer considered a valid therapeutic option due to their adverse neuropsychiatric side effects. Here, we describe a novel nanotechnology-based drug delivery system for repurposing the abandoned first-in-class global CB1R antagonist, rimonabant, by encapsulating it in polymeric nanoparticles (NPs) for effective hepatic targeting of CB1Rs, enabling effective treatment of NAFLD and T2D. Rimonabant-encapsulated NPs (Rimo-NPs) were mainly distributed in the liver, spleen, and kidney, and only negligible marginal levels of rimonabant were found in the brain of mice treated by iv/ip administration. In contrast to freely administered rimonabant treatment, no CNS-mediated behavioral activities were detected in animals treated with Rimo-NPs. Chronic treatment of diet-induced obese mice with Rimo-NPs resulted in reduced hepatic steatosis and liver injury as well as enhanced insulin sensitivity, which were associated with enhanced cellular uptake of the formulation into hepatocytes. Collectively, we successfully developed a method of encapsulating the centrally acting CB1R blocker in NPs with desired physicochemical properties. This novel drug delivery system allows hepatic targeting of rimonabant to restore the metabolic advantages of blocking CB1R in peripheral tissues, especially in the liver, without the negative CB1R-mediated neuropsychiatric side effects.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Rimonabanto/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Canabinoides/uso terapêutico
4.
Bioorg Chem ; 130: 106236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371817

RESUMO

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or ß-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant. Analyses of the results for the Series I and II derivatives showed that minor structure modifications to their functional groups and especially the incorporation of 1-aminopiperidine or 4-aminothiomorpholine 1,1-dioxide motifs can profoundly affect their bias toward G protein or ß-arrestin signaling, and that their binding affinity and functional activity can be disassociated. Docking and molecular dynamics simulations revealed that the binding modes of Series I and II antagonists differed primarily in that Series I antagonists formed an additional hydrogen bond with the receptor, whereas those in Series II formed a water bridge.


Assuntos
Antagonistas de Receptores de Canabinoides , Proteínas de Ligação ao GTP , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Rimonabanto , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Canabinoides/metabolismo
5.
Drug Alcohol Depend ; 240: 109646, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191533

RESUMO

Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.


Assuntos
Antagonistas de Receptores de Canabinoides , Canabinoides , Ratos , Masculino , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Rimonabanto/efeitos adversos , Heroína , Antagonistas de Entorpecentes/farmacologia , Fentanila/farmacologia , Naltrexona , Analgésicos Opioides , Oxicodona , Piperidinas/farmacologia , Canabinoides/farmacologia
6.
Neurosci Lett ; 779: 136634, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35429587

RESUMO

Methamphetamine (METH) has been reported to induce social and recognition memory impairment. Evidence suggests that the cannabinoid system has an important modulatory role in cognitive processing and social interaction. Nonetheless, no previous study has investigated the probable role of the cannabinoids system on METH-induced deficits of novel object recognition (NOR) memory and social interaction. Adult male rats were given a neurotoxic METH regimen (four injections of 6 mg/kg, s.c, at 2 h intervals). One week later, they were examined for either NOR or social interaction in different groups. The cannabinoid type 1 receptor (CB1R) antagonist rimonabant (1 or 3 mg/kg, i.p.) improved METH-induced impairment of the acquisition, consolidation, and retrieval, but not reconsolidation, of NOR and also METH-induced impairment of social behavior. Administration of the CB1R agonist WIN 55,212-2 (WIN; 3 or 5 mg/kg, i.p.) did not affect memory deficits or social behavior impairment induced by METH. Our findings may indicate that METH neurotoxicity impairs social and recognition memory. On the other hand, the CB1R antagonist rimonabant, but not the CB1R agonist WIN, prevented these negative effects of METH neurotoxicity. Thus, it seems that the CB1R can be targeted to prevent the adverse effects of METH on cognition and social behavior, at least at experimental levels.


Assuntos
Canabinoides , Metanfetamina , Síndromes Neurotóxicas , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Metanfetamina/toxicidade , Ratos , Receptor CB1 de Canabinoide , Rimonabanto
7.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328343

RESUMO

Targeting cannabinoid 1 receptors (CB1R) with peripherally restricted antagonists (or inverse agonists) shows promise to improve metabolic disorders associated with obesity. In this context, we designed and synthetized JM-00266, a new CB1R blocker with limited blood-brain barrier (BBB) permeability. Pharmacokinetics were tested with SwissADME and in vivo in rodents after oral and intraperitoneal administration of JM-00266 in comparison with Rimonabant. In silico predictions indicated JM-00266 is a non-brain penetrant compound and this was confirmed by brain/plasma ratios and brain uptake index values. JM-00266 had no impact on food intake, anxiety-related behavior and body temperature suggesting an absence of central activity. cAMP assays performed in CB1R-transfected HEK293T/17 cells showed that the drug exhibited inverse agonist activity on CB1R. In addition, JM-00266 counteracted anandamide-induced gastroparesis indicating substantial peripheral activity. Acute administration of JM-00266 also improved glucose tolerance and insulin sensitivity in wild-type mice, but not in CB1R-/- mice. Furthermore, the accumulation of JM-00266 in adipose tissue was associated with an increase in lipolysis. In conclusion, JM-00266 or derivatives can be predicted as a new candidate for modulating peripheral endocannabinoid activity and improving obesity-related metabolic disorders.


Assuntos
Antagonistas de Receptores de Canabinoides , Doenças Metabólicas , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides
8.
Synapse ; 76(7-8): e22232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35313383

RESUMO

Tramadol is widely used to control pain in various diseases, but the relevant mechanisms are less known despite the severe risks of abuse. The medial prefrontal cortex (mPFC) is one of the critical centers of the reward system. Studies have shown that orexins and endocannabinoids are likely to play an important role in addiction. In this study, the effect of orexin receptor-2 (OX2R) and endocannabinoid receptor-1 (CB1R) blockade on the neuronal activity of mPFC was investigated in response to tramadol in male rats. Tramadol was injected intraperitoneally, and its effects on the firing of mPFC pyramidal neurons were investigated using in vivo extracellular single-unit recording. Tramadol affected the pyramidal neuronal activity of the mPFC. AM251 (18 nmol/4 µl), as a selective CB1R antagonist, and TCS-OX2-29 (50 nmol/4 µl), as a selective OX2R antagonist, individually or simultaneously were microinjected into the lateral ventricle of the brain (intracerebroventricular, ICV). The results showed that the ratio of neurons with the excitatory/inhibitory or no responses was significantly changed by tramadol (p < .05). These changes were prevented by blockade of CB1Rs alone or blockade of OX2Rs and CB1Rs simultaneously (p < .05). However, blockade of these receptors in the vehicle group had no significant effect on neuronal activity. The findings of this study indicate the potential role of orexin and endocannabinoid systems in mediating the effects of tramadol in mPFC and the possible interaction between the two systems via OX2 and CB1 receptors. However, further studies are needed to identify these effects by examining intracellular signaling.


Assuntos
Antagonistas dos Receptores de Orexina , Tramadol , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides , Masculino , Neurônios , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Receptor CB1 de Canabinoide , Receptores de Canabinoides , Tramadol/farmacologia
9.
Brain Res Bull ; 181: 77-86, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093468

RESUMO

Hormone therapy (HT) has failed to improve learning and memory in postmenopausal women according to recent clinical studies; however, the reason for failure of HT in improving cognitive performance is unknown. In our research, we found cognitive flexibility was improved by 17ß-Estradiol (E2) in mice 1 week after ovariectomy (OVXST), but not in mice 3 months after ovariectomy (OVXLT). Isobaric tags for relative and absolute quantitation (iTRAQ) revealed increased cannabinoid receptor interacting protein 1 (CNRIP1) in E2-treated OVXLT mice compared with E2-treated OVXST mice. Adeno-associated virus 2/9 (AAV2/9) delivery of Cnrip1 short-hairpin small interfering RNA (Cnrip1-shRNA) rescued the impaired cognitive flexibility in E2 treated OVXLT mice. This effect is dependent on CB1 function, which could be blocked by AM251-a CB1 antagonist. Our results indicated a new method to increasing cognitive flexibility in women receiving HT by disrupting CNRIP1.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Estradiol/farmacologia , Terapia de Reposição Hormonal , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Ovariectomia , Piperidinas/farmacologia , Pós-Menopausa , Pirazóis/farmacologia , RNA Interferente Pequeno , Receptor CB1 de Canabinoide/antagonistas & inibidores
10.
Pharmacol Biochem Behav ; 213: 173320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990705

RESUMO

Assessing the role of cannabinoid (CB) receptors in behavior is relevant given the trend toward the legalization of medicinal and recreational marijuana. The present research aims at bridging a gap in our understanding of CB-receptor function in animal models of frustrative nonreward. These experiments were designed to (1) determine the effects of chronic administration of the nonselective CB1-receptor agonist WIN 55,212-2 (WIN) on reward downshift in rats and (2) determine whether the effects of chronic WIN were reducible to acute effects. In Experiment 1, chronic WIN (7 daily injections, 10 mg/kg, ip) accelerated the recovery of consummatory behavior after a 32-to-4% sucrose downshift relative to vehicle controls. In addition, chronic WIN eliminated the preference for an unshifted lever when the other lever was subject to a 12-to-2 pellet downshift in free-choice trials, but only in animals with previous experience with a sucrose downshift. In Experiment 2, acute WIN (1 mg/kg, ip) reduced consummatory behavior, but did not affect recovery from a 32-to-4% sucrose downshift. The antagonist SR 141716A (3 mg/kg, ip) also failed to interfere with recovery after the sucrose downshift. In Experiment 3, acute WIN administration (1 mg/kg, ip) did not affect free-choice behavior after a pellet downshift, although it reduced lever pressing and increased magazine entries relative to vehicle controls. The effects of chronic WIN on frustrative nonreward were not reducible to acute effects of the drug. Chronic WIN treatment in rats, like chronic marijuana use in humans, seems to increase resistance to the effects of frustrative nonreward.


Assuntos
Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Comportamento Consumatório/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Recompensa , Rimonabanto/farmacologia , Sacarose/farmacologia
11.
Pharmacol Biochem Behav ; 213: 173339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077729

RESUMO

Cannabinoid use has increased among aging individuals. However, little information on age-related differences in the behavioral effects of these agents is available. To explore potential differences in the behavioral effects of cannabinoids, we determined effects of Δ9-tetrahydrocannabinol (THC, 1-10 mg/kg) or rimonabant (0.3-3.2 mg/kg) on operant fixed-ratio responding (FR10) for food in young adult (6 months) and aged (29 months) rats. THC dose-dependently decreased responding for food. Rimonabant alone had little or no effect on responding up to 1.0 mg/kg, but disrupted responding following a 3.2 mg/kg dose. Rimonabant (1.0 mg/kg) partially antagonized response disruption by THC. These effects were similar in young adult and aged rats. However, aging has been reported to change the neurobiology of cannabinoid CB1 receptors. To confirm our rats exhibited such differences, we assessed CB1 receptor binding sites and function in six subcortical (caudate, nucleus accumbens CA1, and CA2/CA3), and three cortical regions (medial prefrontal, temporal, entorhinal) in young adult (6 months) or aged (26 months) male Lewis rats using quantitative autoradiography. CB1 receptor binding sites were reduced in cortical, but not subcortical brain regions of aged rats. CB1 receptor function, at the level of receptor-G protein interaction, was not different in any region studied. Results indicate that down-regulation of CB1 receptor binding sites observed in cortical regions of aged rats was not accompanied by a commensurate decrease in CB1 receptor-stimulated [35S]GTPγS binding, suggesting a compensatory increase in receptor function in cortical areas. Together, our results provide additional evidence of age-related changes in central CB1 receptor populations. However, the functional compensation for decreased CB1 receptor binding may mitigate changes in behavioral effects of cannabinoids. With the rising use of cannabinoid-based therapeutics among aging populations, further evaluation of age-related changes in the cannabinoid system and the impact of these changes on effects of this class of drugs is warranted.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Fatores Etários , Animais , Autorradiografia/métodos , Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ligantes , Masculino , Ratos , Ratos Endogâmicos Lew , Receptores de Canabinoides/metabolismo , Rimonabanto/farmacologia
12.
Neuropharmacology ; 207: 108935, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968475

RESUMO

AIMS: Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect off PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS: Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS: PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3ß. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE: PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.


Assuntos
Acetaminofen/farmacologia , Antipiréticos/farmacologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Traumatismo por Reperfusão/metabolismo , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/metabolismo , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/fisiopatologia
13.
Behav Pharmacol ; 33(2&3): 222-229, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845169

RESUMO

There are reports regarding the effects of intracellular Ca2+ and synthesis and release of endocannabinoids. The secretion of endocannabinoids depends on the L-type calcium channel. The present study evaluated the involvement of the cannabinoid CB1 receptors in the effect of L-type calcium channel blocker verapamil on passive avoidance learning (PAL) in adult male rats. In this study, we examined the effects of an acute administration of the cannabinoid CB1 receptors antagonist/inverse agonist AM251 following a chronic administration of the Ca2+ channel blocker verapamil on PAL. Male Wistar rats were administered verapamil (10, 25 and 50 mg/kg) or saline intraperitoneally (i.p) daily for 13 days (n = 10/group). After this treatment period, a learning test (acquisition) was performed, and a retrieval test was performed the following day. The results indicated that chronic systemic administration of verapamil (in a dose-dependent manner) impaired memory acquisition and retrieval. Pre-training acute administration of a selective CB1 antagonist/inverse agonist, AM251 (5 mg/kg, i.p.) did not change memory acquisition and retrieval. Co-administration of the verapamil and AM251 significantly reversed verapamil-induced amnesia, suggesting a functional interaction between AM251 and verapamil. The results indicated the interactive effects of cannabinoid CB1 receptors and L-type calcium channel in passive avoidance learning and AM251 can counter the effects of verapamil on memory.


Assuntos
Antagonistas de Receptores de Canabinoides , Canabinoides , Animais , Aprendizagem da Esquiva , Cálcio/farmacologia , Canais de Cálcio Tipo L/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Masculino , Piperidinas , Pirazóis , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide , Verapamil/farmacologia
14.
Brain Res Bull ; 178: 82-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808322

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.


Assuntos
Gânglios da Base/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/metabolismo , Doença de Parkinson/metabolismo , Gânglios da Base/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico
15.
Neuropharmacology ; 205: 108913, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864001

RESUMO

Growing evidence indicates that cannabidiol (CBD), a substance present in the Cannabis sativa plant, has potential therapeutic value to regulate abnormal emotional memories associated with post-traumatic stress and drug use disorders. CBD can attenuate their valence after retrieval (i.e., during reconsolidation) or potentiate their suppression by extinction. Pharmacological research has now focused on elucidating how it acts. Systemic antagonism of cannabinoid type-1 (CB1) receptors has often prevented the abovementioned effects of CBD. However, it is unknown in which brain regions CBD stimulates CB1 receptors and how it interferes with local activity-related plasticity to produce these effects. The present study addressed these questions considering the reconsolidation of contextual fear memories in rats. We focused on the medial prefrontal cortex (mPFC), which comprises the anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) subregions, as local activity or plasticity has been associated with the process to-be-investigated. Animals that received post-retrieval systemic CBD treatment presented relatively fewer cells expressing Zif268/Egr1 protein, a proxy for synaptic plasticity related to reconsolidation, in the AC and PL. At the same time, there were no significant differences in the IL. Pretreatment with the CB1 receptor antagonist/inverse agonist AM251 into the AC, PL, or IL prevented the impairing effects of systemic CBD treatment on reconsolidation. CBD also caused reconsolidation impairments when injected directly into the AC or PL but not the IL. Together, these findings show complementary mechanisms through which CBD may hinder the reconsolidation of destabilized aversive memories along the dorsoventral axis of the mPFC.


Assuntos
Canabidiol/efeitos adversos , Agonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/farmacologia , Consolidação da Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores
16.
Comput Biol Chem ; 95: 107590, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700256

RESUMO

BACKGROUND: Cannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified. METHODS: Thus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors. RESULTS: The results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Antagonistas de Receptores de Canabinoides/química , Canabinoides/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
17.
Int Immunopharmacol ; 100: 108140, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536742

RESUMO

Hepatic ischemia/reperfusion (HIR), which can result in severe liver injury and dysfunction, is usually associated with autophagy and endocannabinoid system derangements. Whether or not the modulation of the autophagic response following HIR injury is involved in the hepatoprotective effect of the cannabinoid receptor 1(CB1R) antagonist rimonabant remains elusive and is the aim of the current study. Rats pre-treated with rimonabant (3 mg/kg) or vehicle underwent 30 min hepatic ischemia followed by 6 hrs. reperfusion. Liver injury was evaluated by serum ALT, AST, bilirubin (total and direct levels) and histopathological examination. The inflammatory, profibrotic and oxidative responses were investigated by assessing hepatic tumor necrosis factor α (TNFα), nuclear factor kappa B (NF-κB), transforming growth factor (TGF-ß), lipid peroxidation and reduced glutathione. The hepatic levels of CB1R and autophagic markers p62, Beclin-1, and LC3 as well as the autophagic signaling inhibitors ERK1/2, PI3K, Akt and mTOR were also determined. Rimonabant significantly attenuated HIR-induced increases in hepatic injury, inflammation, profibrotic responses and oxidative stress and improved the associated pathological features. Rimonabant modulated the expression of p62, Beclin-1, and LC3, down-regulated CB1R, and dcreased pERK1/2, PI3K, Akt, and mTOR activities. The current study suggests that rimonabant can protect the liver from IR injury at least in part by inducing autophagy, probably by modulating ERK- and/or PI3K/AKT-mTOR signaling.


Assuntos
Autofagia/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatite/prevenção & controle , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Rimonabanto/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Modelos Animais de Doenças , Hepatite/enzimologia , Hepatite/patologia , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais
18.
Molecules ; 26(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443679

RESUMO

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Antagonistas de Receptores de Canabinoides/farmacologia , Endotoxemia/patologia , Etanol/efeitos adversos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptor CB1 de Canabinoide/antagonistas & inibidores , Consumo de Bebidas Alcoólicas/sangue , Animais , Ansiedade/sangue , Ansiedade/complicações , Comportamento Animal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Catalepsia/complicações , Cicloexanóis/administração & dosagem , Teste de Labirinto em Cruz Elevado , Endotoxemia/sangue , Endotoxemia/complicações , Endotoxinas/sangue , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Hipotermia Induzida , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/administração & dosagem , Rimonabanto/farmacologia , Estereoisomerismo , Sulfonamidas/administração & dosagem
19.
Eur J Pharmacol ; 909: 174433, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416240

RESUMO

Cannabidiol is increasingly considered for treatment of a wide range of medical conditions. Binding studies suggest that cannabidiol binds to CB1 receptors. In the rat isolated vas deferens bioassay, a single electrical pulse causes a biphasic contraction from nerve-released ATP and noradrenaline. WIN 55,212-2 acts on prejunctional CB1 receptors to inhibit release of these transmitters. In this bioassay, we tested whether cannabidiol and SR141716 were acting as competitive antagonists of this receptor. Monophasic contractions mediated by ATP or noradrenaline in the presence of prazosin or NF449 (P2X1 inhibitor), respectively, were measured to a single electrical pulse delivered every 30 min. Following treatment with cannabidiol (10-100 µM) or SR141716 (0.003-10 µM), cumulative concentrations of WIN 55,212-2 (0.001-30 µM) were applied followed by a single electrical pulse. The WIN 55,212-2 concentration-contraction curve EC50 values were applied to global regression analysis to determine the pKB. The antagonist potency of cannabidiol at the CB1 receptor in the rat vas deferens bioassay matched the reported receptor binding affinity. Cannabidiol was a competitive antagonist of WIN 55,212-2 with pKB values of 5.90 when ATP was the effector transmitter and 5.29 when it was noradrenaline. Similarly, SR141716 was a competitive antagonist with pKB values of 8.39 for ATP and 7.67 for noradrenaline as the active transmitter. Cannabidiol's low micromolar CB1 antagonist pKB values suggest that at clinical blood levels (1-3 µM) it may act as a CB1 antagonist at prejunctional neuronal sites with more potency when ATP is the effector than for noradrenaline.


Assuntos
Canabidiol/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Contração Muscular/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ducto Deferente/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Bioensaio , Masculino , Norepinefrina/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/farmacologia , Ducto Deferente/metabolismo
20.
Front Endocrinol (Lausanne) ; 12: 720734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305821

RESUMO

Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.


Assuntos
Antagonistas de Receptores de Canabinoides/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Insuficiência Renal Crônica/etiologia , Terapias em Estudo/métodos , Terapias em Estudo/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...